
Using AOI’s Wisely

BCII-AboutAOI’s_02142019

bachelor controls
E X C E L L E N C E S I N C E 1 9 8 3

INTRODUCTION
• Can you trust an AOI?
• How do you know that?
• Why use an AOI in the first place?

These don’t seem like outlandish questions so
why don’t we dive into the subject and see
what happens?

First of all, let me acknowledge that anyone
interacting with the program whether that be a
developer or maybe maintenance personnel,
will have to spend a little time learning how to
navigate among the UDT’s the AOD’s and
finally the AOI’s.

(We'll sort out the alphabet soup in a little bit.)

DIVING IN
Let’s begin by recognizing that anything that
you’re going to use over and over needs to be
thoroughly tested (validated). The same is true
with an AOI. You have to test the AOI thor-
oughly enough to trust that it reliably does the
job for which it is intended

I think most users of the Rockwell Automation
ControlLogix family of controllers are familiar
with User Defined Types (data types or UDT’s).
It seems to be common practice for developers
to define UDT’s to organize the properties
associated with something that is repeatedly
used within an application’s program such as
locations or an ISA-88 unit or perhaps some-
thing as abstract as a ‘Finite State Machine’
module. (We will save the discussion about the
‘Finite Stae Machine’ for another time.)

Page: 1 of 2

Page: 2 of 2

DIVING IN continued
AOD’s (Add On Defined) are a type of UDT
where the developer sets up a data structure
for the respective AOI’s.

The AOI is a collection of instructions, that use
controller tags to instantiate the data structure
of the respective AOD to accomplish a module
of logic that is repeatedly used. One example
can be alarms. Alarms need to notify people of
their presence both visually and audibly. In
addition, the Operator Interface (OIT or HMI)
needs to be given a message to display and log
(prompt). Alarms must also allow the operator
to both silence and acknowledge the alarm.
That logic block and its tags must exist for each
and every alarm that is in the system.

It seems then that if we can develop a module
of logic and tags that will always behave the
same and avoid any chance of mis-typing an
entry, that would normally be a good idea. So
here comes the AOI. The AOI has a distinct
appearance when it is used in a section of code
within the processor. It is easily identified.

The AOI is set up to have certain tags made
visible and these serve to be the inputs and
outputs that are available to the programmer.
There are also internal tags that can be config-
ured to be accessible by the main application
program for things such as HMI prompts, etc.
So when programming each alarm, all the
programmer has to do is enter the name of the
AOI that he needs and then attach logic to it
much like the way we deal with blocks of logic
such as counters and timers in standard PLC
logic.

We just can’t ‘lift the hood’ on the counters and
timers that are a standard part of the RSLogix
5000 instruction set. The AOI operates the
same way except that it is incumbent upon the
developer and user to validate the AOI so that
they can absolutely trust how it functions and
in addition we can ‘lift the hood’ on the AOI’s
that we develop in order to perform that level
of testing.

MORE DIVING
You could get the same thing accomplished
with a sub-routine, but the big difference
between the AOI and a sub-routine is the
ability to trouble shoot what is happening. In a
sub-routine, data is moving in and out of the
sub-routine so rapidly you can’t be sure which
sub-routine call you’re seeing at any given
time. With an AOI it is unique to the section
of logic where it is instantiated.

SUMMARY
In summary, I believe that the AOI is a very
useful tool that can reduce if not eliminate
error in dealing with highly repetitive modules
of code. There is no reason to be afraid of
them, but they do deserve respect and valida-
tion. When something goes wrong it is natural
to condemn the thing you understand the least,
so if you haven’t invested enough time and
energy to properly test the AOI, it will always
be guilty until proven innocent.

I suggest that user's allow AOI’s to be used.
They are a great tool for modularity of code
and ensuring accuracy of logic within them.

Ray Bachelor
Chairman of the Board
Bachelor Controls, Inc.

https://www.bachelorcontrols.com

Using AOI’s Wisely

BCII-AboutAOI’s_02142019

